
Understanding x86 Assembly Code

To view the assembly code generated for your program in Visual Studio you need to set a break

point at the location you want to examine, then run the application in debug-mode. When it stops at

your break point, press Ctrl-F11.

Below is an example of what you see when you call function foo(). One breakpoint was set just

before the function call and another at the start of the function implementation. The assembly code

window shows you the source code and then the assembly code it generated:

 int varint = 5;

0097BAA9 mov dword ptr [varint],5

 int test = foo(varint,3);

0097BAB0 push 3

0097BAB2 lea eax,[varint]

0097BAB5 push eax

0097BAB6 call foo (096648Dh)

0097BABB add esp,8

0097BABE mov dword ptr [test],eax

int foo(int & a, int b) {

00F0A940 push ebp

00F0A941 mov ebp,esp

00F0A943 sub esp,44h

00F0A946 push ebx

00F0A947 push esi

00F0A948 push edi

 int orig = a;

00F0A949 mov eax,dword ptr [a]

00F0A94C mov ecx,dword ptr [eax]

00F0A94E mov dword ptr [orig],ecx

 a = a + 1;

00F0A951 mov eax,dword ptr [a]

00F0A954 mov ecx,dword ptr [eax]

00F0A956 add ecx,1

00F0A959 mov edx,dword ptr [a]

00F0A95C mov dword ptr [edx],ecx

 return orig * b;

00F0A95E mov eax,dword ptr [orig]

00F0A961 imul eax,dword ptr [b]

}

00F0A965 pop edi

00F0A966 pop esi

00F0A967 pop ebx

00F0A968 mov esp,ebp

00F0A96A pop ebp

00F0A96B ret

Instructions are shown in AT&T syntax: mnemonic source, destination.

Source and destination are operands and can be immediate values, registers, memory addresses, or

labels. Immediate values are constants, and on some systems will be prefixed by a $. For

instance, $0x5 represents the number 5 in hexadecimal. Register names may be prefixed by a %.

Memory addresses are referenced by name. For any name, name is the address of the memory and

[name] is the contents of the memory.

Values have a specified size. A byte is 8-bits, a word is 16 bits, a dword is 32 bits. In assembler

these sizes are specified by byte ptr, word ptr and dword ptr.

Registers are data storage locations within the CPU. The width of a CPU’s registers is defined by its

architecture. So if you have a 64-bit CPU, your registers will be 64 bits wide.

The x86 family has 8 registers whose prefix depends on the architecture as shown below:

ALAHAXEAXRAX

BLBH*EBXRBX

CLCHCXECXRCX

DLDHDXEDXRDX

*ESIRSI

*EDIRDI

Stack PointerESPRSP

* Base PointerEBPRBP

byte (8)byte (8)

word (16)

dword (32)

R8-
R15

qword (64)

Return Value

Note: the * registers must be restored on return from a function call. See below.

In addition to these registers there will be instruction address registers and status registers.

For backwards compatibility, any register can be accessed as a narrower type by using a different

register prefix.

The registers of particular interest are:

~ax – The return value from a function is placed here.

~bp - Base Pointer for the current function from which arguments and local variables are offset.

~sp - Stack Pointer – on entry to a function, the base-address for the function.

On return from a function call ~bp must be restored to its previous state so that the base-address is

not lost for the calling context. In addition, the C/C++ compiler expects any function to return with

~bx, ~si and ~di in the same state that it got them. It can use them internally, but must restore

their values before returning. These registers, marked with * in the diagram above, are known as

“untouchables”.

64-bit Intel processors add another 8 64-bit registers, R8-R15, sixteen 128-bit registers, XMM0-

XMM15 and eight 80-bit floating-point registers FPR0-FPR7

A Function Call

When a function call is encountered, the assembler inserts instructions to push the arguments onto
the stack (in reverse order) and then the return address for the calling instruction. The stack pointer
now points at the next available stack location. These operations are wrapped in the assembler
call instruction. It is then the function’s responsibility to save the current base-pointer (ebp) and
set the base pointer to the current stack pointer, as the base for this function. It must also save the
other untouchable registers (edi,esi,ebx) by pushing these onto the stack. But before pushing the
untouchable registers it will decrement the stack pointer to leave room for the local variables. All
these will be accessed with offsets to the base-pointer.

Argument 2

Argument 1

Return Address

Saved Base Ptr EBP

Local Var 1

Local Var 2

Saved EDI

Saved ESI

Saved EBX

EBP

ESP

Lower Addresses

[ebp]+8

[ebp]+12

[ebp]-4

Stack use at a function call

Understanding the code

 int varint = 5;

0097B AA9 mov dword ptr [varint],5

mov assigns the value 5, as a dword, to the address pointed to by the name varint.

0097BAB0 push 3

0097BAB2 lea eax,[varint]

0097BAB5 push eax

0097BAB6 call foo (096648Dh)

The arguments for the function call are pushed onto the stack in reverse order. The first argument is

a reference, so the destination address is first obtained by lea (Load Effective Address) which is

placed in eax. That address is then pushed onto the stack. Finally the function is called.

int foo(int & a, int b) {

00F0A940 push ebp

00F0A941 mov ebp,esp

00F0A943 sub esp,44h

00F0A946 push ebx

00F0A947 push esi

00F0A948 push edi

Upon entering a function, esp points to the base address for our function. The arguments and local

variables are at known offsets from this pointer. It becomes the base-pointer inside our function.

Before we copy the esp into esb we must preserve the old esb on the stack for later reinstating.

Upon entering a function, the value of the “untouchable” registers must be stored. The push

instructions save these registers to the stack.

push decrements the stack pointer, esp, and writes its operand to the stack.

mov copies the second argument into the first, here the stack pointer (esp) is copied to the base

pointer register. ebp now points to the base of the function’s stack frame.

sub (subtract) adjusts the stack pointer to make room for pushing the other “untouchable” registers

and local variables onto the stack.

 int orig = a;

00F0A949 mov eax,dword ptr [a]

00F0A94C mov ecx,dword ptr [eax]

00F0A94E mov dword ptr [orig],ecx

The argument is now moved to register eax, specifying its size as dword ptr.

dword ptr [a] says “’a’ is a dword pointer; give me the value it

points to”

But because the argument was passed by reference, we need to follow the argument to its address

and get the value there. The value is placed in ecx.

Finally, the value is copied onto the stack at the location reserved for orig.

 a = a + 1;

00F0A951 mov eax,dword ptr [a]

00F0A954 mov ecx,dword ptr [eax]

00F0A956 add ecx,1

00F0A959 mov edx,dword ptr [a]

00F0A95C mov dword ptr [edx],ecx

Now the argument is dereferenced again and placed in ecx, then 1 is added to the register.

00F0A959 mov edx,dword ptr [a]

00F0A95C mov dword ptr [edx],ecx

Here the result is written back to the argument address because the argument was a referece. edx

is used to hold the address in the first mov. The second mov writes the result from ecx to the

address held in edx.

 return orig * b;

00F0A95E mov eax,dword ptr [orig]

00F0A961 imul eax,dword ptr [b]

}

At the return point the local variable on the stack at orig is moved into eax. It is then integer-

multiplied (imul) by argument b. The caller of the function recovers the return result from register

eax.

Now the final clean-up (epilogue):

00F0A965 pop edi

00F0A966 pop esi

00F0A967 pop ebx

00F0A968 mov esp,ebp

00F0A96A pop ebp

00F0A96B ret

The untouchable registers are restored from the stack and the local variables discarded by moving

the stack pointer back to the base with mov esp,ebp

	Understanding x86 Assembly Code
	A Function Call
	Understanding the code

